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Abstract
Emfrp is a functional reactive programming language de-

signed for small embedded systems. By imposing certain

restrictions on the language mechanism, the language guar-

antees the termination of the update process for each time-

varying value and enables static determination of the amount

of memory required for execution. This allows Emfrp pro-

grams to run safely even in resource-constrained execution

environments. However, the abovementioned restrictions

make it difficult to write time-consuming operations (heavy

tasks) such as graph structure construction and exploration

based on external data. Moreover, since Emfrp updates time-

varying values synchronously, a naive implementation of

such heavy tasks using external function calls will result in

a slow response time to input. Some existing programming

languages provide asynchronous processing mechanisms to

ensure descriptiveness and responsiveness for heavy tasks.

In this study, we propose a method to introduce heavy tasks

into reactive programs naturally by introducing language

mechanisms equivalent to asynchronous processing mecha-

nisms, such as future and promise, into Emfrp. In this paper,

we first discuss the problems with a naive implementation

of heavy tasks in Emfrp, then explain the proposed method

based on an example, and discuss the language runtime im-

plementation.

CCS Concepts: • Computer systems organization→ Em-
bedded software; • Software and its engineering→ Func-
tional languages.

Keywords: functional reactive programming, asynchronous

tasks, promise, embedded systems
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1 Introduction
A reactive system is a computing system that continuously

responds to external inputs given synchronously or asyn-

chronously while changing its internal state. In implement-

ing reactive systems using conventional programming lan-

guages, techniques such as polling and callbacks (interrupt

handling) are commonly used. However, these techniques

often reduce program readability and maintainability [3].

Functional Reactive Programming (FRP) is a programming

paradigm that supports clear and declarative descriptions of

reactive systems by using time-varying values (signals) that
abstract values that change over time. FRPwas originally pro-

posed as an interactive animation library for Haskell [8] and

has since been studied and shown to be beneficial in various

fields such as GUIs [6], web applications [7], robotics [13, 19],

embedded systems [12, 24], and IoT [23].

Emfrp [24] is an FRP language designed for small-scale

embedded systems. The memory footprint of the executable

code of the language is small enough to be executable in

resource-constrained execution environments such as mi-

crocontrollers. Also, to run programs safely in such environ-

ments, the language is designed to have certain restrictions

(see Section 3.1) on the syntax and type system to guarantee

the termination of the update process for each time-varying

value and to allow static determination of the amount of run-

time memory. We have so far proposed various extensions to

Emfrp to explore the advantages of the language in various

applications [20, 21, 27, 28].

In FRP, it is often assumed that the time required to up-

date each time-varying value is negligible. However, even in

small-scale embedded systems, there are cases where this as-

sumption does not hold. Time-consuming operations (called

heavy tasks throughout this paper), such as the graph con-

struction and search described in Section 3, in the updating

process of time-varying values in a system have a negative
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impact on the reactivity of the system by increasing its re-

sponse time. Although the language restrictions mentioned

above limit the ability to write heavy tasks directly in Emfrp,

they can be introduced through the naïve use of external

(foreign) functions.

The Actor-Reactor model [26] provides a solution to the

problem. The model isolates operations corresponding to

heavy tasks by introducing a different execution model (the

Actor model [1]), thereby eliminating the negative impact on

reactive behavior. However, this approach may reduce the

readability of the program because it splits interdependent

reactive behaviors and heavy tasks.

In this paper, we introduce an extension of Emfrp that

includes a mechanism for describing asynchronous tasks

and a type corresponding to futures or promises. The main

contributions of this work are (1) to show, through a non-

trivial example, that the proposed extension allows heavy

tasks to be embedded in a reactive code naturally and (2) to

present the implementation method of the runtime system

for the extended language on resource-constrained embed-

ded systems.

The rest of the paper is organized as follows. Section 2

provides an overview of Emfrp, followed by an example that

motivates this study in Section 3. The problems of naïve

solutions are also clarified in this section. Section 4 describes

the proposed extension of Emfrp and its runtime system

implementation. The section also provides a description of

the example using the extension. Section 5 discusses the

relationship with related work, and Section 6 provides the

summary and future work.

2 Emfrp
This section presents an overview of Emfrp [24], an FRP

language designed for small-scale embedded systems. For

detailed descriptions, please refer to the paper [24] and the

source code repository
1
.

2.1 Example: A Differential Drive Robot
Figure 1 is an Emfrp version of the two-wheeled differen-

tial drive robot example in Yampa [13]. This program con-

tinuously computes the position of the robot. Let 𝑣𝑙 (𝑡) and
𝑣𝑟 (𝑡) be the velocities of the left and right wheels at time 𝑡 ,

respectively. The position (𝑥 (𝑡), 𝑦 (𝑡)) and direction 𝜃 (𝑡) of
the robot are:

𝑥 (𝑡) = 1

2

∫ 𝑡

0

(𝑣𝑙 (𝑢) + 𝑣𝑟 (𝑢)) cos𝜃 (𝑢)𝑑𝑢 (1)

𝑦 (𝑡) = 1

2

∫ 𝑡

0

(𝑣𝑙 (𝑢) + 𝑣𝑟 (𝑢)) sin𝜃 (𝑢)𝑑𝑢 (2)

𝜃 (𝑡) = 1

𝑙

∫ 𝑡

0

(𝑣𝑟 (𝑢) − 𝑣𝑙 (𝑢))𝑑𝑢 (3)

where 𝑙 is the distance between the left and right wheels.

1https://github.com/psg-titech/emfrp

1 # RobotPos.mfrp
2 module RobotPos # Module Name
3 in vl : Float, # Left velocity [m/sec]
4 vr : Float, # Right velocity [m/sec]
5 t(0) : Int # Elapsed time [msec]
6 out x : Float, # X-coordinates [m]
7 y : Float # Y-coordinates [m]
8 use Std, Params # Import library
9

10 node dt = (t - t@last) / 1000.0
11 node init [0.0] theta =
12 theta@last + (vr - vl) * dt / l
13

14 node init[0.0] x =
15 x@last + (vr + vl) * cos(theta) * dt / 2.0
16 newnode y =
17 CalcPosY(vl, vr, theta, dt) # using submodule

1 # Params.mfrp
2 material Params
3

4 # Constant value
5 data l = 0.1 # Wheel-to-wheel distance [m]
6

7 # function
8 func max(a: Int, b: Int) = if a > b then a else b

1 # CalcPosY.mfrp
2 module CalcPosY
3 in vl: Float, vr: Float, theta: Float, dt: Float
4 out y : Float
5 use Std
6

7 node init[0.0] y =
8 y@last + (vr + vl) * sin(theta) * dt / 2.0

Figure 1. Position of a differential drive robot

The program in Figure 1 consists of two modules (in

files RobotPos.mfrp and CalcPosY.mfrp) and a library (in file

Params.mfrp). A module consists of a header and a body.

The header section (lines 2–8 in RobotPos.mfrp, lines 2–5

in CalcPosY.mfrp) declares the module name, input and out-

put nodes, and the name of required libraries. The body

section (lines 10–17 in RobotPos.mfrp, line 7–8 in CalcPosY

.mfrp) consists of the definitions of constants, functions,

intermediate nodes and output nodes, and the instantiations

of submodules.

2.2 Time-Varying Values (Nodes)
Time-varying values in FRP are represented by objects called

nodes in Emfrp. Nodes are categorized as input nodes, output
nodes, and intermediate nodes. In the RobotPosmodule, vl, vr

and t are input nodes, x and y are output nodes, and dt and

theta are intermediate nodes.

Input nodes receive values from external sources. For ex-

ample, vl and vr receive the values from the rotary encoders

connected to the left and right wheels respectively, and t

receives the value from the system timer.

Intermediate nodes and output nodes have update expres-

sions defined by the syntax node 𝑛 = 𝑒 or node init[𝑐] 𝑛 = 𝑒,

https://github.com/psg-titech/emfrp
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1 // RobotPosMain.c
2 void Input(float* vl, float* vr, int* t){
3 /* Get values from sensors */
4 }
5

6 void Output(float x, float y){
7 /* Put values to actuators */
8 }
9

10 int main(void){
11 // Activate Emfrp's RobotPos module
12 // This function is generated from RobotPos

module by compiler.
13 ActivateRobotPos();
14 return 0;
15 }

Figure 2. Template I/O code for RobotPos module

where 𝑛 is the node’s name, 𝑒 is the expression, and 𝑐 is a

constant.

One of the features of Emfrp is that the previous value
of a node can be obtained by using the 𝑛@last expression.

Using the previous values makes it easy to calculate the

difference and cumulative time-varying values. For example,

theta, x and y use @last to approximate the integral as the

cumulative values of a small amount of data. Nodes to which

the previous value may be referred are set to their initial

values. For intermediate and output nodes, node definitions

with init are used. For input nodes, initial values are set in

the module’s header, as in RobotPos.mfrp line 5.

If a definition of node 𝑥 contains a reference to node 𝑦

(𝑦@last is not considered a reference to node 𝑦), we say that

node 𝑥 depend on node 𝑦. In Emfrp, all nodes in the program

are statically checked to ensure that their dependencies are

acyclic directed graphs (DAGs) to determine the correct order

of time-varying value updates.

2.3 Input/Output with External Environment
The Emfrp program is compiled into C source code. At

the same time, a template code that contains functions for in-

put/output and a function call to invoke the Emfrp program

is emitted. Figure 2 is an excerpt of the template code output

when the RobotPosmodule is compiled as a top-level module.

The Emfrp program starts by calling the ActivateRobotPos

function in the main function. Input function is called when

external input is required during the processing of the func-

tion ActivateRobotPos. Similarly, Output function is called

when external output is required.

2.4 Execution Model
Emfrp performs a push-based time-varying update process.

This execution model propagates input node changes to de-

pendent nodes in order. Since it is checked at compile time

that there are no loops in the node dependencies, the time-

varying value update process can be performed appropriately

through the order of the dependencies. In Emfrp, the se-

quence of processing is as follows: input function call, input

node update, internal and output node update in the order

of dependencies, output function call, the previous value

update, and memory management. We call this sequence it-

eration. Repeating this iteration process sequentially without

a break makes it possible to perform reactive behavior.

3 Motivation
In this section, we explain the need for language extensions

in Emfrp, using an example that requires coordination be-

tween reactive behavior and heavy task (see below) execu-

tion.

3.1 The Restrictions of Emfrp
Emfrp has some language restrictions. They prevent time

leaks and space leaks. Moreover, it also guarantees that the

program will not cause runtime errors due to insufficient

memory and that the program keeps reactive behavior. Some

restrictions are: restricting past value references of time-

varying values to the previous value, prohibiting higher-

order time-varying values (that are time-varying values of

time-varying values), and disallowing recursive definitions

of functions and data types. Arrays are also not introduced

due to concerns about out-of-range access errors. Due to

these restrictions, the node update expressions are relatively

simple code. Therefore, each node can be updated instanta-

neously, and the continuous execution of iterations ensures

sufficient responsiveness.

3.2 Heavy tasks
Even small-scale embedded systems often perform tasks that

require the use of complex data structures such as graphs. Us-

ing such data structures can easily lead to memory bloat and

increased computation time. If node update computations

become extremely slow, the responsiveness of the whole

system will deteriorate. The problem that slow computa-

tions deteriorate system responsiveness is called the Reactive
Thread Hijacking Problem (RTHP) [26]. In this paper, we call

the computations not required to be executed every iteration

but cause RTHPs“heavy tasks.” It is assumed that writing to

and reading from data structures such as graphs is performed

in heavy task.

The restrictions of Emfrp described in the previous sec-

tion make it challenging to define and manipulate complex

data structures such as graphs. Therefore, it is tough to im-

plement heavy tasks in Emfrp. EmfrpBCT [28], which intro-

duces a bounded-size recursive data type to Emfrp, allows

the construction and manipulation of lists and tree struc-

tures with a fixed maximum size, thus allowing the writing

of heavy tasks. However, in-place updating of data structures

is not supported, so the update process duplicates the data
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structure multiple times. In a resource-constrained environ-

ment, the RTHP and the problem of reducing the size of the

available data structure are simultaneously caused. For this

reason, heavy tasks on Emfrp (BCT) are often written using

FFI to C. Since naive FFI cannot solve RTHP, however, an

asynchronous task execution mechanism is needed to coor-

dinate reactive behavior, which is responsive enough, with

heavy task execution, which takes time.

3.3 Motivating Example: Exploration Robot
Let us take a maze-exploring robot as an example of a system

requiring reactive actions and heavy task execution coor-

dination. This example mimics the maze traversal of the

Micromouse robot competition
2
. The robot with sensors

and drive wheels explores a given unknown maze and aims

to move autonomously from the start section to the goal

section.

3.3.1 Problem Setting. The maze is rectangular and di-

vided into square sections by walls. Figure 3 shows an exam-

ple of a maze. The walls surround the entire perimeter of the

maze. The robot is given the size of the maze and its sections,

the number of sections, the position of the start and goal

section, and the layout of the walls of the start section in

advance. The start position is fixed at the lower left corner of

the maze, and the walls of the start section are located in the

east-south-west direction, with no walls on the north side.

The robot does not know the information about the walls in

the maze.

Figure 4 shows an illustration of the robot from the top.

The robot has four infrared sensors to detect walls, three

motors with omni-wheels
3
, and one LED to indicate that

the robot has reached its goal. Each motor is equipped with

a rotary encoder that can measure rpm. The omni-wheel

consists of a standard wheel with multiple wheels on its

circumference and can move in a direction perpendicular

to the direction of rotation of the wheels. The robot can

move its body in any direction by arranging the omni-wheels

as shown in Figure 4 and applying the appropriate motor

outputs to each. In other words, the robot in this example is

an omni-directional mobile vehicle and does not rotate its

body when moving between sections.

We explain how the robot moves from the start section

to the goal section. First, the robot is placed in the start

section and begins its program. Since the wall layout of

the start section is fixed, the robot moves to the section to

the north of the start section, which is the target section.

When the center of the robot body moves to the center of the

target section, the robot recognizes that it has reached the

target section. Then the robot records the wall information

of the target section. After reaching the target section, the

robot executes a maze exploration algorithm with the wall

2https://en.wikipedia.org/wiki/Micromouse
3https://en.wikipedia.org/wiki/Omni_wheel

information recorded until now. Note that the next target

section is only one section away from the current section

in either the east, west, south, or north direction. The A*

algorithm or the extended left-hand method can be used

as a maze exploration algorithm. The robot moves to the

new target section obtained from the algorithm. The robot

eventually arrives at the goal section by repeating these

actions. When the robot reaches the goal section, it turns on

an LED to notify the user that it has finished its execution.

These actions consist of (1) moving the robot to the target

section, (2) recording the wall information, and (3) calculat-

ing the next destination by the exploration algorithm with

the recorded wall information. Action (1) is a reactive action

with the motor speed, target coordinates, and elapsed time

as inputs, the current position as the internal state, and the

motor power level as the output. In contrast, actions (2) and

(3) are heavy task actions because they modify the graph

structure representing the maze and perform an exploration

algorithm with the graph.

The robot described above invokes actions (1), (2), and (3),

in sequential order. However, as shown in Figure 5, if the

center of the robot’s body is somewhat close to the center

of the target section, the wall information of the target sec-

tion can be obtained. Thus, the robot can record the wall

information in parallel with its movement toward the target

section and then execute the maze exploration algorithm

to obtain the next target section. Suppose the recording of

wall information and the exploration algorithm is completed

before the robot’s center moves to the center of the target

section. In that case, the robot can instantly move on to the

next target section after reaching the target section, thus

reducing the time the robot spends traversing the maze. The

robot’s exploration performance can be improved by coor-

dinating reactive behavior and heavy task execution. In the

following, the exploration in which reactive behaviors and

heavy task execution are repeated sequentially is called the

standard exploration. The one in which reactive behaviors

and heavy task execution are executed concurrently is called

the improved exploration.

3.3.2 Writing the Example in Plain Emfrp. We write

the robot control program described above in Emfrp (without

extensions). Figure 6 shows the Emfrp module MovePID that

moves the center of the robot’s body to the target position by

PID control. This module takes as input the target position

(tar_x, tar_y), the rotation count of each motor (enc1, enc2

, enc3), and the elapsed time since the previous iteration

(duration). The output is the distance to the target position

(distance) and the power ratio of each motor (duty1, duty2,

duty3). The module internally holds the current position of

the robot (cur_x, cur_y) as a node and continues to update

it using sensor values. It calculates the control variables

(output ratio of motors) to approach the target position by

PID control. More precisely, the robot’s rotation also needs

https://en.wikipedia.org/wiki/Micromouse
https://en.wikipedia.org/wiki/Omni_wheel
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0 1 2

0

1

2

Figure 3. Example of a maze.

Omni-wheel

Infrared
sensor

LED

The center
of the robot

Motor (with rotary encoder)

Figure 4. The exploration robot.

Direction of
movements

Center of the
section 

(Target position)

Figure 5. The robot moves from the left to

the target (right) section.

1 module MovePID # Position controller
2 in tar_x : Float, tar_y : Float, # Target
3 enc1: Int, enc2: Int, enc3: Int,
4 duration : Float # Elapsed time [sec]
5 out distance : Float,
6 duty1 : Int, duty2 : Int, duty3 : Int
7 use Std
8

9 # Coefficients of PID
10 data (Kp, Ki, Kd) = ...
11 # From motor rpm to movement vector.
12 func motor_to_vector(...) = ...
13 # From movement vector to power ratio.
14 func motor_speed(...) = ...
15

16 # updating current positions.
17 node (mx, my) = motor_to_vector(enc1, enc2, enc3)
18 node init [(0, 0)] (cur_x, cur_y) =
19 (cur_x@last + mx, cur_y@last + my)
20

21 # PID control for X axis.
22 node dx = Kp * e_x + Ki * ei_x + Kd * ed_x
23 node init [0] e_x = tar_x - cur_x
24 node init [0] ei_x =
25 ei_x@last + (e_x + e_x@last) / 2 * duration
26 node ed_x = if duration == 0 then 0
27 else (e_x - e_x@last) / duration
28

29 # PID control for Y axis (same as X).
30 node dy = Kp * e_y + Ki * ei_y + Kd * ed_y
31 node (e_y, ei_y, ed_y) = ...
32

33 # Distance to target
34 node distance = sqrt(e_x*e_x + e_y*e_y)
35 # Output to motors
36 node (duty1, duty2, duty3) = motor_speed(dx, dy)

Figure 6. Position Controller by PID control

to be controlled, but here we assume that the robot does not

rotate. If this is the case, PID control of the robot’s rotation

can be performed using the rotary encoder and gyro sensor

values.

Figure 7 shows the Emfrp module MazeRunnerEmfrp, which

performs the standard exploration. Figure 8 shows the pseudo

code of the input and output functions in C for the module

MazeRunnerEmfrp. The MazeRunnerEmfrp module takes as in-

put the values of the infrared sensors in the four directions

(sn, se, ss, sw), the rotation counts of the motors (enc1, enc2,

1 module MazeRunnerEmfrp
2 in sn : Int, se : Int, ss : Int, sw : Int,
3 enc1: Int, enc2: Int, enc3: Int,
4 time(0) : Float, # Time from start [sec].
5 to_u : Int, to_v : Int
6 out finished : Bool,
7 duty1 : Int, duty2 : Int, duty3 : Int,
8 reached_target : Bool,
9 wall_n : Bool, wall_e : Bool,
10 wall_s : Bool, wall_w : Bool
11 use Std
12

13 data G_U = ... # X-index of goal section.
14 data G_V = ... # Y-index of goal section.
15 data WS = ... # The width of sections.
16 data THR_WALL = ... # Threshold of sensors.
17 data THR_TARGET = ... # Epsilon distance.
18

19 # Time taken for the previous iteration.
20 node duration = time - time@last
21

22 # Control position.
23 newnode target_dist, d1, d2, d3 =
24 MovePID(to_u * WS, to_v * WS,
25 enc1, enc2, enc3, duration)
26

27 node duty1 = if reached_target then 0 else d1
28 node duty2 = if reached_target then 0 else d2
29 node duty3 = if reached_target then 0 else d3
30

31 # Whether the robot reached target section.
32 node reached_target = target_dist < THR_TARGET
33

34 # Wall information
35 node wall_n = sn > THR_WALL
36 node wall_e = se > THR_WALL
37 node wall_s = ss > THR_WALL
38 node wall_w = sw > THR_WALL
39

40 # Whether the robot reached goal.
41 node finished = (to_u == G_U && to_v == G_V
42 && reached_target)

Figure 7. The maze exploration robot in Emfrp.

enc3), the time since the start of the program (time), and the

index of the target section (to_u, to_v). In line 23, the motor

outputs (d1, d2, d3) are calculated to move the robot’s body

to the center of the input target section (to_u, to_v) by using

MovePIDmodule as a submodule. When the robot reaches the

target section, each motor output is set to 0 to stop the robot
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1 // Global variables across Input and Output
2 int next_u = 0; // X-index of the next target
3 int next_v = 1; // Y-index of the next target
4 bool has_next = false;
5

6 void Input(int* sn, int* se, int* ss, int* sw,
7 int* enc1, int* enc2, int* enc3,
8 float* time, int* to_u, int* to_v){
9 get_sensors(sn, se, ss, sw);
10 get_encoders(enc1, enc2, enc3);
11 get_time(time);
12 if(has_next){
13 *to_u = next_u; *to_v = next_v;
14 has_next = false;
15 }
16 }
17

18 void Output(bool finished,
19 int duty1, int duty2, int duty3,
20 bool reached_target, bool wall_n,
21 bool wall_e, bool wall_s, bool wall_w){
22 if(finished) set_led();
23 set_motor(duty1, duty2, duty3);
24 if(reached_target){
25 // Heavy task executions
26 set_wall(next_u, next_v,
27 wall_n, wall_e, wall_s, wall_w);
28 calc_next(&next_u, &next_v);
29 has_next = true;
30 }
31 }

Figure 8. Input and Output functions for MazeRunnerEmfrp

at 27–29 lines. Next, in Figure 8, the next target section calcu-

lated by the Output function is fed back to the Input function

via the global variables (next_u, next_v, has_next). If the out-

put node reached_target is true, the robot has reached the

target section and has stopped. This condition is detected at

line 24 (in the Output function) of Figure 8. Then, the wall

information at that time is registered (set_wall function),

and the next target section is calculated (calc_next func-

tion). During the calculation, the Emfrp iteration process

is suspended. When the calculation is finished, the Output

function is done, and the Emfrp iteration starts again. At

the next iteration, when the Input function is invoked, the

global variable has_next is true, so the new target section

is set. Since the current position and the new target section

are far apart, the reached_target node will be false, and the

iteration will be executed to approach the target section.

We successfully implemented standard exploration by run-

ning heavy task in the output function and feeding back

the result to the input function. On the other hand, it is

challenging to implement the improved exploration due to

executing heavy task sequentially in the output function.

The problem (P1): the sequential execution of heavy tasks

in the output function makes other reactive behaviors less

responsive. Moreover, because the heavy tasks in C cause

feedback from the output function to the input function, an

implicit dependency from the output node to the input node

inevitably appears. The problem (P2): such implicit depen-

dencies and the data structures subject to heavy task are not

explicitly indicated in the Emfrp program.

3.3.3 Coordination betweenEmfrp andRTOS. To solve
the problem (P1), let us use a library that supports asyn-

chronous task execution, such as RTOS, and implement an

improved exploration by executing heavy tasks concurrently

with Emfrp iterations. In this case, the heavy task execution

is interrupted during the iteration, so the iteration interval is

expected to be longer. The iteration is not expected to be sus-

pended for long, which solves the responsiveness problem

(P1). However, the problem (P2) has not been solved because

the heavy task execution part is written in C. In addition,

data must be shared between the Emfrp iteration and the

RTOS task, which is expected to use conventional concur-

rent programming techniques. Problem (P3): the difficulties

of conventional concurrent programming become apparent,

and the advantages of using Emfrp (or FRP) are lost.

4 Language and Runtime Extensions
To overcome the problems (P1), (P2), and (P3) while combin-

ing reactive behavior and heavy task execution, we intro-

duce an asynchronous task execution mechanism to Emfrp.

This section explains the language and runtime extensions

through an example of an exploration robot written in Emfrp

with the asynchronous task execution mechanism.

4.1 Language Extensions
Figure 9 shows an example of an exploration robot written

in the extended Emfrp language. Figure 10 shows the ma-

terials imported into this module. Hereafter, asynchronous

tasks representing heavy tasks are referred to as tasks, and

the data structures targeted by the tasks are referred to as

task resources.

The additional language features are: (1) syntax for defin-

ing tasks and task resources (Figure 10, lines 14–25), (2) mech-

anism for passing task resources between modules (Figure 9,

line 3), (3) Future type that represents the computation state

of a task, and (4) syntax for binding a task to a Future node

(Figure 9, lines 15–17 and 20–21).

4.1.1 Tasks andTaskResources. Tasks and task resources
are defined in Figure 10, lines 14–25. The first part of the

definition is the name of the task resource. A task resource

is an abstraction of data handled by a task, and an instance

of the task resource is manipulated at runtime. The relation-

ship between a task resource definition and a task resource

instance is similar to that between a class and its instance in

Java (or other OOP language).

A task is defined in the form:

task 𝑔:(𝑥1 : 𝜏,. . .,𝑥𝑛 : 𝜏)->(𝑦1 : 𝜏,. . .,𝑦𝑚 : 𝜏)/𝑝

where 𝑔 is the task name, 𝑥𝑖 is the name of the input, 𝑦𝑖
is the name of the output, 𝜏 is a type other than Future
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1 # MazeRunner.mfrp
2 module MazeRunner
3 in mg : resource MazeGraph,
4 sn : Int, se : Int, ss : Int, sw : Int, enc1: Int, enc2: Int, enc3: Int, time(0) : Float
5 out finished : Bool, duty1 : Int, duty2 : Int, duty3 : Int
6 use Std, Resources
7

8 node duration = time - time@last
9 newnode target_dist, duty1, duty2, duty3 = MovePID(to_u * WS, to_v * WS, enc1, enc2, enc3, duration)
10

11 # Whether the robot has neared the target section
12 node init[False] near_target = target_dist < SECTION_WIDTH * 0.4
13 node reached_target = target_dist < THR_TARGET # Whether the robot reached target section.
14

15 tasknode finish_register : Future[Unit] = # Register section information
16 RegisterSection(to_u, to_v, wall_n, wall_e, wall_s, wall_w) with mg
17 at (!near_target@last && near_target) # positive edge of near_target
18

19 # Search result (if it has already reached the goal, keeps returning the goal coordinates)
20 tasknode next : Future[(Int, Int)] =
21 CalcNextSection(to_u, to_v, G_U, G_V) with mg at wait(finish_register)
22

23 # Which direction the robot is going
24 node move_dir = (to_u - from_u, to_v - from_v) of:
25 (0, 0) -> Stop,
26 (0, 1) -> StoN, (0, -1) -> NtoS, (1, 0) -> WtoE, (-1, 0) -> EtoW,
27 _ -> Stop # unreachable
28

29 node wall_n = move_dir of: # Whether there is a wall to the north in target section
30 Stop -> sn > THR_WALL_SHORT,
31 StoN -> sn > THR_WALL_LONG,
32 NtoS -> False, # Absolutely no walls.
33 WtoE -> sn > THR_WALL_SHORT,
34 EtoW -> sn > THR_WALL_SHORT
35 node wall_e = ... # omitted
36 node wall_s = ...
37 node wall_w = ...
38

39 # Update target section (always move forward to (0, 1) at first)
40 # Define nodes of:
41 # previous target (from_u, from_v), current target (to_u, to_v), temporarily next target (tmp)
42 node init[(0, 0, 0, 1, None)] (from_u, from_v, to_u, to_v, tmp) = (reached_target, next, tmp@last) of:
43 (True, Ready((nu, nv)), _) -> (to_u@last, to_v@last, nu, nv, None),
44 (False, Ready(n), _) -> (from_u@last, from_v@last, to_u@last, to_v@last, Some(n)),
45 (True, _, Some((nu, nv))) -> (to_u@last, to_v@last, nu, nv, None),
46 _ -> (from_u@last, from_v@last, to_u@last, to_v@last, tmp@last)
47

48 node finished = move_dir of: # Whether the robot reached goal section
49 Stop -> to_u == G_U && to_v == G_V && reached_target,
50 _ -> False

Figure 9. The maze exploration robot in extended Emfrp.

type (see below), and 𝑝 is either read or write. 𝑝 is a hint to

the compiler and runtime to avoid data races when multiple

tasks concurrently handle the same task resource instance. In

this example, for an instance of the task resource MazeGraph,

the writing task is RegisterSection and the reading task is

CalcNextSection.

In Figure 9, line 3, an instance of a task resource is passed

as an argument to the module. The received instance can be

passed to a submodule, which can define tasknode (see below)

for that instance. In the case of a top-level module such as

the MazeRunner module, the resource instance is passed at

program activation (as described in the 4.2 section).

4.1.2 Future Type and Tasknode. Nodes representing
the result of a task need to indicate that the computation

is unfinished since the task is executed asynchronously. In

concurrent programming, it is typical to introduce a data

type called "future" and type it to expressions that have not

yet finished computation.We introduced Future type defined

as:

type Future[A] = Ready(A) | Pending | NotStarted

where A is the type of task result. Nodes with type Futurewill

only have the value of Ready(_) during the iteration imme-

diately after its task has been completed. Pending indicates

that the task has been executed (or waiting to be executed)
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1 # Resources.mfrp
2 material Resources;
3 type MoveDir = Stop | StoN | NtoS | WtoE | EtoW
4 data THR_WALL_SHORT = ... # Threshold for wall
5 data THR_WALL_LONG = ... # Threshold for wall
6 data (G_U, G_V, WS, THR_TARGET) = ...
7

8 # Function to wait for task completion.
9 func wait(s : Future[A]) = s of:
10 Ready(_) -> True,
11 Pending -> False, NotStarted -> False
12

13 # Define task resources and the tasks.
14 resource MazeGraph {
15 # Task to record wall information of section (u,

v) in a MazeGraph instance
16 task RegisterSection :
17 (u: Int, v: Int,
18 n: Bool, e: Bool,
19 s: Bool, w: Bool) -> (h: Unit) / write
20

21 # Task to compute the next section (next_u,
next_v) to go from (u,v) to the goal

22 task CalcNextSection :
23 (u: Int, v: Int, goal_u: Int, goal_v: Int)
24 -> (next_u: Int, next_v: Int) / read
25 }

Figure 10.Material file for MazeRunner.

but has not yet finished. NotStarted indicates that the task

is not waiting for execution.

Nodes with Future type is defined in the syntax:

tasknode 𝑧:Future[(𝜏,. . .,𝜏)] = 𝑔(𝑒1,. . .,𝑒𝑛) with 𝑟 at 𝑒𝑡
where 𝑧 is node name, 𝑔 is task name, 𝑟 is task resource in-

stance, 𝑒1, · · · , 𝑒𝑛 are task inputs, and 𝑒𝑡 is issue condition.

The task 𝑔 is issued when 𝑧 is not Pending and 𝑒𝑡 is evalu-

ated to True. When a task is issued, the input expressions

(time-varying values) are stored as snapshots of their current

values, and those snapshots are used during task execution.

Dependency analysis is not performed on tasknodes. The

checking for task issue conditions and their issuing are per-

formed after all normal node updating. There is no inconsis-

tency due to dependencies in node definitions. We can refer

to the previous value of a Future node by @last just like a

normal node.

4.1.3 Limitations of tasknode. There can only be at most

one tasknode definition for a task in each task resource in-

stance throughout the whole program. The compile time

analysis checks this. This limitation allows the maximum

number of tasks in the task execution queue to be deter-

mined statically. For example, for the MazeRunner module,

the tasknode definition for the RegisterSection task that

uses the task resource instance mg is on line 16, so a similar

tasknode definition for the RegisterSection task is prohib-

ited.

1 // Resource.c
2 struct MazeGraph { /* ... */ };
3

4 #define STACKSIZE_RegisterSection 2000
5 void RegisterSection(
6 struct MazeGraph* w_res,
7 int u, int v, int n, int e, int s, int w,
8 int* h) {
9 /* Set wall information */
10 }
11

12 #define STACKSIZE_CalcNextSection 2000
13 void CalcNextSection(
14 const struct MazeGraph* r_res,
15 int cur_u, int cur_v, int goal_u, int goal_v,
16 int* next_u, int* next_v) {
17 /* Search next direction */
18 }

Figure 11. Compilation results of task resources and tasks.

1 // MazeRunnerMain.c
2 void Input(...){ /* ... */ }
3 void Output(...){ /* ... */ }
4 int main(void){
5 /* Initialization of sensors */
6 /* Initialization of other devices */
7 /* Initialization of resource instance (mg) */
8 struct MazeGraph mg = { /* ... */ };
9 ActivateMazeRunner(&mg);
10 return 0;
11 }

Figure 12. Template I/O code for MazeRunner

4.2 Runtime Extension
Emfrp is intended to run programs in small-scale resource-

constrained embedded environments, especially on micro-

controllers. Therefore, the following sections explain the

runtime extensions for single-core microcontrollers. Design-

ing an asynchronous task execution mechanism, we aimed

(A1) to maintain consistency of task resources shared among

tasks, (A2) to work in a small-scale environment such as a

microcontroller, and (A3) not to require dynamic memory

allocation (to the heap area).

4.2.1 Representing Tasks and Task Resources. The
task resources and tasks defined in Figure 10 are converted

by the compiler into the template code shown in Figure 11.

Task resources are converted to C structures, whose contents

are completed by the user. Tasks are converted to C functions,

which receive a pointer to a structure representing a task

resource instance as their first argument. Each task function

is expected to handle the task resource instance according

to the read or write annotated to the task. A task function

is executed under a particular static stack area of the size

specified by the STACKSIZE_XXX. In order to determine the

size of the allocated area, it is necessary to determine the
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call Input(...)
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emit result to tasknode

Runtime extension

Figure 13. The flow of the extended iteration

Algorithm 1 Issue 𝑔𝑟 (the task 𝑔 with resource instance 𝑟 )

and update tasknode 𝑧

1: function update_and_issue_𝑔_with_𝑟 ( )

2: if 𝑔𝑟 .pending then
3: emit Pending to 𝑧

4: else if eval(𝑒𝑡 ) == true then
5: 𝑣1 ← eval(𝑒1); . . . ; 𝑣𝑛 ← eval(𝑒𝑛)

6: 𝑔𝑟 .parameter← (𝑣1, . . . , 𝑣𝑛)
7: if𝑊𝑟 ≠ ∅∧ mutex(𝑔𝑟 , 𝐸) then
8: 𝐸.enqueue(𝑔𝑟 )

9: else
10: 𝑊𝑟 .enqueue(𝑔

𝑟
)

11: end if
12: emit Pending to 𝑧

13: 𝑔𝑟 .pending← true

14: else
15: emit NotStarted to 𝑧
16: end if
17: end function

maximum number of tasks that may be issued. For this rea-

son, tasknode has a limit in the 4.1.3 section. This limitation

and feature are made with (A3) in mind.

Figure 12 shows the template code for the main function

and input/output functions generated from the top-level

module. The difference from the conventional Emfrp tem-

plate code is that the structure representing the task resource

instance is defined as a local variable mg. The task resources

specified as input to the top-level module are compiled into

the arguments of the ActivateMazeRunner function. The user

starts an Emfrp program by calling the ActivateMazeRunner

function with mg as input.

4.2.2 Iterations. Figure 13 shows the flow of the extended

iteration. An asynchronous task execution phase is added

to the iteration explained in section 2.4. Unfortunately, due

to the task execution, the extended iteration has a longer

execution time than the non-extended one. To deal with

this, the user can define the task execution time to keep

the responsiveness degradation within an acceptable level.

During an iteration, tasks are executed only for the time

specified by the user at compile time.

Algorithm 2 Asynchronous task execution

1: function execute_task( )

2: if 𝐸 = ∅ then
3: return
4: end if
5: 𝑔𝑟 ← 𝐸.dequeue()

6: (is_done, result)← ctxsw𝑁 (𝑔, 𝑟, 𝑔𝑟 .parameter, 𝑔𝑟 .stack)
7: if is_done then
8: emit Ready(result) to 𝑧

9: 𝑔𝑟 .pending← false

10: while𝑊𝑟 ≠ ∅ ∧ mutex(𝑊𝑟 .peek(), 𝐸) do
11: 𝑦𝑟 ←𝑊𝑟 .dequeue()

12: 𝐸.enqueue(𝑦𝑟 )

13: end while
14: else
15: 𝐸.enqueue(𝑔𝑟 )

16: end if
17: end function

4.2.3 Task Execution Mechanism. Algorithm 1 and al-

gorithm 2 are the core of our proposed asynchronous task ex-

ecution mechanism. In our method, in order to achieve (A1),

we use the read and write specified in the task definition as

hints to the compiler and the runtime system. The runtime

system has one execution queue 𝐸 and waiting queues for

each resource instance.𝑊𝑟 represents the queue for resource

instance 𝑟 . In each algorithm, 𝑔𝑟 is an object representing a

task 𝑔 that manipulates a resource instance 𝑟 . A task object

in progress is contained in the execution list 𝐸. Task objects

that have been issued but cannot be executed are enqueued

in the waiting queue𝑊𝑟 . For a task object 𝑔
𝑟
, if (1) 𝑔 is a read

task and all tasks corresponding to 𝑟 in 𝐸 are read tasks, or

(2) 𝑔 is a write task and no task corresponding to 𝑟 exists in

𝐸, 𝑔𝑟 can be enqueued to 𝐸. Let MUTEX(𝑔𝑟 , 𝐸) be a predicate
that determines this condition. Each algorithm uses MUTEX

to control the mutual exclusion of task resource instances

during task execution.

Algorithm 1 is a function that issues tasks. This function

is executed for each 𝑔𝑟 in the diamond part of Figure 13.

In the algorithm, 𝑧, 𝑒1, . . . , 𝑒𝑛 , 𝑒𝑡 are from the tasknode def-

inition: tasknode 𝑧 = 𝑔(𝑒1,. . .,𝑒𝑛) with 𝑟 at 𝑒𝑡 . eval(𝑒) eval-
uates the time-varying value 𝑒 . The variable 𝑔𝑟 .pending in-

dicates whether the status of the task object 𝑔𝑟 is pending

or not. The 𝑔𝑟 .parameter is a variable that stores a snapshot

of the task’s arguments. If the task status is not PENDING,

it checks the issue condition and issues the task. 𝑀𝑈𝑇𝐸𝑋

is used to determine either 𝐸 or𝑊𝑟 to insert the task object.

The value of the tasknode is also updated.

Algorithm 2 is a function that intermittently executes the

issued task. This function is executed in the cloud-shaped

part of Figure 13. Task execution is round-robin, one per

iteration. Task execution and pausing are handled using the

operating system’s context switch technique and the timer
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interrupts. Line 6 of the algorithm is a pseudo code repre-

senting task execution by the context switch technique. The

runtime system performs a context switch to task 𝑔 for the

time 𝑁 given at compile time. At this time, a resource in-

stance 𝑟 and stored parameters (𝑔𝑟 .parameter) are passed to

the task function. The task function runs under the statically

allocated stack area (𝑔𝑟 .stack). After executing a task for a

specified time, if the task is completed, the corresponding

tasknode is overwritten with Ready, and other tasks of re-

source instance 𝑟 are inserted into the execution queue 𝐸.

Because task execution is round-robin and tasks are moved

to the execution queue sequentially from the head of the

waiting queue, this scheduling algorithm does not cause star-

vation (a state in which a task that has been issued remains

unexecuted). Since this algorithm is simple and requires a

timer interrupt (not special hardware), it can achieve (A2).

The number of task resource instances and the number of

tasks can be determined statically due to the restrictions of

the tasknode definition (section 4.1.2). Based on this infor-

mation, the maximum lengths of the execution and waiting

queues can be determined at compile time. Thus, (A3) can

be achieved.

Note that asynchronous tasks are functions written in

the C language. Therefore, there is no guarantee of memory

safety by Emfrp. The memory provided for task execution

may be insufficient for the stack area, which may cause

unexpected bugs during program execution. External tools

such as StackAnalyzer
4
should be used to guarantee safety

to prevent this.

4.3 Example in Extended Emfrp
This section explains the behavior of the MazeRunner module

in Figure 9. First, it is explicitly specified in line 3 that mg

is used as the instance of the task resource MazeGraph. The

other input/output nodes are almost the same as those of

the non-extended MazeRunnerEmfrp module. However, since

the recording of wall information and the searching next

target section is now handled within the module, they are not

contained in the input/output nodes. In line 9, the MovePID

module is expanded as a sub-module. Hence, the robot moves

in response to changes of the target section (to_u, to_v).

near_target node on line 12 becomes true when the cen-

ter of the robot is sufficiently within the target section. By

detecting the rising edge of this node, the wall informa-

tion recording task RegisterSection on lines 15–17 is issued.

When completed, this task returns a value of type Unit. wait

function defined in lines 9–11 of Figure 10, detects the com-

pletion of the computation of a Future node as a rising edge.

In lines 20–21, a maze search task (CalcNextSection) is is-

sued using this function after the wall information has been

recorded. In other words, when the robot is close enough to

the target section, the wall information of the target section

4https://www.absint.com/stackanalyzer/index.htm

is recorded, and the search for the next target section begins.

Since MovePID module continues to work during this search,

the reactive behavior does not stop. The pattern match in

lines 41 and 42 detects the completion of CalcNextSection

task. Line 41 means the task was completed after the robot

reached the target section. In this case, the new target sec-

tion is immediately updated in (to_u, to_v). Line 42 means

the task was completed before the robot reached the tar-

get section. The new target section is temporarily moved to

tmp node. After that, when the robot reaches the target, it

matches line 43, so the stored tmp (the new target section) is

put into (to_u, to_v).

When the new target section is set, near_terget node

becomes false. When the robot gets close enough to the new

target, near_terget node becomes true, and a rising edge is

triggered. Thus, the above steps are repeated until the robot

reaches the goal.

From the above, the improved exploration was imple-

mented in the MazeRunner module. In addition, although the

program does not explicitly show the data structure imple-

mentation subject to the heavy task, it shows which resource

(data structure) is manipulated via the task resource instance.

The problem (P2) has been relaxed, and the MazeRunner mod-

ule is a relatively reader-friendly program.

5 Related Works
The future (or promise) pattern is a design pattern in con-

current programming that delays the fetching of the result

of an asynchronous calculation until the value of the cal-

culation is needed. Java, JavaScript, Rust, Scala, and many

other languages that support asynchronous execution im-

plement this pattern [5, 9, 10, 18]. This method is typically

used for pipelining asynchronous computational processes.

In this study, heavy task execution is indeed an asynchro-

nous process. The necessity of managing and utilizing the

computation state of issued tasks led to the introduction of

the future pattern.

In reactive programming [3], reactive behaviors are repre-

sented as data flows in a dependency graph between time-

varying values. Thus, how to represent behaviors that are

difficult to handle as data flows, such as heavy tasks in this

study, is a language design problem. Van den Vonder et al. an-

alyzed this problem for reactive programming libraries based

on imperative languages (e.g., REScala [22], ReactJS [14],

RxJS [25]) [26]. As a result, they advocated the Reactive
Thread Hijacking Problem (RTHP). They also proposed the

Actor-Reactor model [26], a method to separate and mod-

ularize the reactive and procedural behavior descriptions.

This model categorizes time-consuming processes (heavy

task) and side effects as actors [1] with procedural descrip-

tions. They are separated from reactive behavior descriptions

(reactors), represented as dataflow graphs.

https://www.absint.com/stackanalyzer/index.htm
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In the Actor-Reactor model, the coordination between ac-

tors and reactors works by feedback from the reactor’s output

through the actor to the reactor’s input. They use Stella, a

language designed for Actor-Reactor models, to write actors

and reactors in a single language. As a result, the depen-

dencies between actors and reactors are explicitly defined.

So the readability and maintainability of the program are

maintained. On the other hand, when combining Emfrp with

the Actor-Reactor model, the actor is an input/output func-

tion written in the C language. Thus, the implicit dependen-

cies between output and input nodes across two languages,

discussed in section 3.3.2 (P2), reduce the readability and

maintainability of the program. In this study, we solve this

problem by introducing tasknode definition and Future type.

Lustre [11, 16] is a synchronous dataflow language that

allows programming using the fby operator, similar to Em-

frp’s @last. Cohen et al. introduced future to Lustre, which

enables concurrency, pipelining, and jitter control [4]. Their

future allows Lustre code to be processed concurrently with

other Lustre codes. They formally prove that the semantics

are preserved even when removing the future from a code

with futures. On the other hand, our proposed method intro-

duces tasknodes and Futures to achieve (time-consuming)

foreign function calls with no loss of responsiveness. It does

not provide for parallel processing between Emfrp codes.

Since the computation performed by tasknodes is difficult

to express in non-extended Emfrp, the preservation of se-

mantics requires a different discussion than that of Cohen et

al.

Hailstorm [23] is a functional language for IoT applica-

tions inspired by the Arrowized FRP [15, 17]. Users write

programs by composing signal functions using &&& and >>>

operators specific to Arrowized FRP. Juniper [12] is an FRP

language for Arduino [2], a small microcontroller. The foldp

function in Juniper (originated from Elm [7]) allows the

temporal accumulation of time-varying values. Although

these languages and Lustre (described above) have different

notation schemes, time-varying values are updated sequen-

tially in a single main thread, as in Emfrp. Therefore, RTHP

reduces the responsiveness of the whole system. We expect

that our runtime system, designed based on approaches (A1),

(A2), and (A3), will help improve this issue.

6 Conclusions and Future Tasks
We designed an asynchronous task execution mechanism for

Emfrp, an FRP language for small-scale embedded systems,

that allows reactive behavior and relatively time-consuming

task coordination. As language extensions, we introduced

the definition of tasknode and Future types to issue asynchro-

nous tasks and obtain their results. As a runtime extension,

we proposed an asynchronous execution mechanism that

can work even in a resource-constrained environment by

inserting a task execution phase after the time-varying value

update.

The proposedmethod treats all resourcesmanipulated by a

task as task resources. By splitting task resources into smaller

resources and merging and sharing them among tasks, more

fine-grained exclusion control and resource management are

possible. The design of the execution mechanism and task

execution priorities to achieve this is a future issue.

Future tasks also include the implementation of the pro-

posed method and the measurement of the system respon-

siveness. The latter contains the time overhead of heavy task

execution, and the spatial overhead of the run-time memory

required for asynchronous task execution.
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