
日本ソフトウェア科学会第 39 回大会 (2022 年度) 講演論文集

A Complete Glitch-Free Propagation Algorithm

for Distributed Functional Reactive

Programming

Ju Guiyuan Sosuke Moriguchi Takuo Watanabe
Functional reactive programming (FRP) provides a good abstraction for developing reactive programs. Be-

cause many distributed applications are reactive, FRP should be beneficial for distributed systems. However,

undesirable phenomena called glitches can happen due to the asynchronous nature of distributed systems.

A glitch is a temporal inconsistency that can occur in the value propagation in FRP. Many propagation

algorithms have been proposed to solve the problem, each with its advantages and disadvantages. This

paper presents a new value propagation algorithm for a distributed functional reactive programming lan-

guage. This algorithm provides a uniform method to guarantee single-source and complete glitch freedom.

It performs well without using distributed locking by introducing pulse nodes that effectively act as a

global clock. Furthermore, it provides fault tolerance for pulse nodes. We evaluate the performance of the

algorithm empirically and compare it with other algorithms in a simulated distributed setting.

1 Introduction

A reactive system is a computational system that

continues interaction with its environment. It con-

stantly updates its state and produces the output

based on the changing inputs. Many software sys-

tems are reactive: i.e., GUIs react to user inputs,

and IoT networks react to sensor inputs. Reactive

Programming (RP) is a programming paradigm

that supports building reactive systems based on

time-varying values and their change-propagation

[1]. It provides programmers with a better abstrac-

tion to program reactive systems. For example,

it solves the inverted control flow problem that is

common in the observer pattern [5]. Functional Re-

active Programming (FRP) [4] is a variant of RP,

it provides a declarative way to program reactive

systems.

There are many existing implementations of

(F)RP, such as Elm [2] and React [8] in the field of

Web GUI. However, these implementations mainly

This is an unrefereed paper. Copyrights belong to the

Author(s).

居桂園, 森口草介, 渡部卓雄, Department of Computer

Science, School of Computing, Tokyo Institute of

Technology, 東京工業大学 情報理工学院 情報工学系.

target non-distributed systems. While nowadays

distributed systems have become increasingly im-

portant, it is beneficial to introduce FRP into the

programming of distributed systems. Unlike non-

distributed systems, it is more challenging to real-

ize distributed FRP (DFRP) safely and efficiently.

The notion of glitches is one of the problems that

make DFRP difficult. A glitch is a temporal incon-

sistency that can occur in the value propagation

in FRP. While it is easy to make non-distributed

FRP systems glitch-free, providing such property in

distributed settings takes more consideration. Al-

though there have been many approaches to resolve

glitches in distributed (F)RP systems [10] [3] [6] [7],

each has its limitations. This paper introduces a

new value propagation algorithm for a distributed

functional reactive programming language called

Distributed XFRP. It reduces average message la-

tency and produces more valid updates than exist-

ing algorithms.

The rest of the paper is organized as follows. The

next section has an introduction to the concept of

Distributed FRP (DFRP), followed by the classifi-

cation of glitches and glitch-freedom in DFRP. Sec-

tion 3 presents our propagation algorithm called

PSNK, and Section 4 briefly explains existing al-

gorithms for comparison purposes. Section 5 de-

1 module FanContro l l e r

2 in tmp : Float , % temperature s enso r

3 hmd: Float , % humidity s enso r

4 out fan : Bool % fan switch

5

6 % thre sho ld

7 const th = 75

8

9 % di scomfor t index

10 node di = 0 .81 ∗ tmp + 0.01 ∗ hmd ∗
11 (0 . 99 ∗ tmp − 14 . 3) + 46 .3

12

13 % fan s t a tu s

14 node fan = di >= th

Code 1 Distributed XFRP Source Code

Fig. 1 Graphical Representation

scribes the evaluation of our algorithm based on

several simulations, and Section 6 discusses their

results. Section 7 examines related work, and Sec-

tion 8 concludes the paper with future directions.

2 Distributed FRP

2. 1 Language Distributed XFRP

An FRP program can be described as a depen-

dency graph, where nodes represent time-varying

values, and arcs represent data dependencies. This

model can naturally be combined with the Actor

model to expand it into distributed systems [11].

However, the properties of distributed systems give

birth to many implementation difficulties, notably

the glitch problem. Here we take a language called

Distributed XFRP [10] as an example of DFRP. Dis-

tributed XFRP is a purely functional reactive pro-

gramming language for building distributed appli-

cations, it is based on another FRP language called

Emfrp [9] designed for non-distributed embedded

systems. The implementation of Distributed XFRP

avoids a certain type of glitch called single-source

glitch.

Code 1 is an example from the paper [10], which

describes a fan controller module that depends on a

Fig. 2 Single-Source Glitch

temperature sensor and a humidity sensor. The fan

status is controlled by the discomfort index which

is computed from the current value of the temper-

ature and humidity sensor. If the discomfort index

is higher than the threshold, the fan is turned on,

otherwise turned off. Fig. 1 shows the dependency

of the time-varying values, an arrow from A to B

means A is in the definition of B. Each node in this

dependency graph can be distributed into different

locations, forming a distributed system. The actor

model is utilized as the underlying model of each

node, enabling nodes to communicate by sending

and receiving messages.

This example code is a simple case of DFRP,

when dependency becomes more complex, the so-

called glitch will happen.

2. 2 Glitches and Glitch-Freedom

Glitches are temporal inconsistencies that oc-

cur during the propagation of changes. According

to [6], glitch freedom is classified into two types:

single-source glitch freedom and complete glitch

freedom, we call a violation of them single-source

glitch and concurrent glitch respectively. Glitches

may happen in both FRP and DFRP, but due to

the unreliable connections and concurrent updates

in distributed systems, it is difficult to implement

a glitch-free system efficiently in a distributed set-

ting. In the coming sections, we are going to ex-

plain what is a single-source glitch and concurrent

glitch, along with common solutions in both non-

distributed and distributed settings.

2. 2. 1 Single-Source Glitch Freedom

Fig. 2 shows a graph susceptible to single-source

glitch. Node A represents a source node, source

nodes are the sources of updates, for example, it

may be a sensor device that produces messages pe-

Fig. 3 Concurrent Glitch

riodically and send them to subsequent nodes, here

source A produce integers, node B computes the re-

sult of 2 * A, and node C computes the result of

A + A, since they should always be equal to each

other, the value of node D should always be true.

However, depending on the update order, such in-

variant might be violated. For example, source A

sent a value 2, if node D observe the result from

node B earlier than node C(because of the differ-

ent network latency), then the value of node B is 4,

while node C is 0 (suppose the initial value of A, B

and C is 0), thus the value of node D becomes false

temporarily, this is called single-source glitch.

For non-distributed FRP(single thread), single-

source glitch can be easily solved by doing topo-

logical sorting on the dependency graph, so that

whenever updating a node, the values of dependen-

cies are already the newest version. But for DFRP,

this method isn’t applicable because of its ineffi-

ciency. Distributed XFRP took another way to

solve this problem, it adds version to each message

sent by sources, a version includes the identifier of

a source, and a counter for this message, by com-

paring the versions of received messages in node D,

node D can wait until all the matching messages

arrived and then compute a new update, through

this way, single-source glitch freedom is achieved in

Distributed XFRP.

2. 2. 2 Complete Glitch Freedom

While a single-source glitch is about a single

source, a concurrent glitch is about concurrent up-

dates from multiple sources. Consider a graph like

Fig. 3, source S1 send a command + 2 to node

N1 and N2, which plus 2 to the current values;

source S2 send a command * 2 to node N1 and

N2, which multiply current values with 2. Depend-

ing on the receiving order of messages observed on

node N1 and N2, the resulting sequence of updates

Fig. 4 Source Unification

may be different from each other. For example, N1

observed + 2 before * 2, so its updates are 2 and

then 4 (suppose the initial value of N1 and N2 are

0), but N2 observed * 2 before + 2, its updates are

0 and then 2, although both N1 and N2 depend on

the same set of sources, their updates are different

from each other, this is called concurrent glitch.

Non-distributed FRP can solve it easily by topo-

logical sorting combined with an iterative execu-

tion model. Iterative execution means when an up-

date occurs, it will be processed by all the subse-

quent nodes, during this processing, other updates

are blocked. Suppose S1 generate the update + 2

slightly earlier than S2, then both N1 and N2 re-

ceive the command + 2, now the values are both

2, and then the command from S2 are sent to N1

and N2, both of the values become 4.

For DFRP, it’s far more difficult, we don’t have a

central mechanism to control the execution order of

each node, and we cannot block other sources when

an update of one source is being processing in the

system without degrading the performance. Dis-

tributed XFRP doesn’t guarantee the property of

complete glitch freedom, but it provides a possible

solution to it — Source Unification.

In Fig. 4, an extra node U is added to unify up-

dates from S1 and S2, after unification, the order

of updates observed from N1 and N2 is always the

same, hence no concurrent glitch. It is an effec-

tive solution, but it suffers from the single point

of failure problem: if the unification node stops

working for some reason, the whole system will also

stop functioning. If we add multiple unification

nodes, the synchronization between these unifica-

tion nodes is still a problem. Because of these draw-

backs, we propose a new propagation algorithm in

the next section.

(a) Single-Source Glitch Freedom in PSNK

(b) Complete Glitch Freedom in PSNK

Fig. 5 PSNK

3 Proposed Algorithm

This section presents our propagation algorithm

called PSNK. The key idea is to introduce pulse

nodes that initiate the synchronized propagation

from source nodes to sink nodes.

Similar to source unification, in PSNK, we also

add extra nodes to the existing dependency graph,

but differently, we place them before source nodes.

As shown in 5(a) and 5(b), there are one or more

nodes placed before sources, we call these nodes

pulse nodes. The number of pulse nodes isn’t re-

stricted, we can place as many pulse nodes as we

want, as long as each of them is connected to every

source node.

The algorithm has two parts, one for source

nodes, and another one for other nodes except for

source and pulse nodes. Both of them require mes-

sages to arrive in first-in-first-out order and each

message is delivered exactly once.

Pulse nodes send pulses periodically to every

source, a pulse doesn’t contain any information, no

pulse identity or counter. In Algorithm 1 for source

nodes, there is a counter that counts the currently

received pulse, when the value of the source is up-

dated (e.g. the underlying sensor generates a new

value), and if this is the first update concerning

current pulse counter, the source sends this update

attached with the current count of the pulse.

Algorithm 1 For Source Nodes

Require: Messages arrive in order and delivered ex-

actly once.

for all n ∈ Source do

pcount := 0 //The count of pulse

u := null //Storing the value of updates

pchanged, uchanged := false

loop

(rt, rv) := receive() //rt: type of message

//rv : value

if rt = pulse then

pcount ← pcount + 1

pchanged ← true

end if

if rt = update then

u← rv
uchanged ← true

end if

if pchanged and uchanged then

send(n, u, pcount)

pchanged, uchanged ← false

end if

end loop

end for

In Algorithm 2 for other nodes, each node holds

a queue for each incoming connection, whenever a

new message arrives, it will be inserted into the cor-

responding queue, and the algorithm starts a loop,

it will check whether all queues are not empty, if

all are not empty, the messages with the smallest

pulse count will be dequeued, the dequeued mes-

sages are combined with the Last buffer, which

holds the dequeued messages from the last loop, if

the messages in the Last buffer are enough to com-

pute a new update (the number of messages is the

same as the incoming connections, which means all

precedent nodes have a value), a new update will

be computed. This loop will continue until one or

more queues become empty.

We give a simplified explanation based on the ex-

ample of Fig. 3. Consider now we add one or more

pulse nodes into this graph, suppose the command

of + 2 in S1 appears when the pulse counter is

0, and the command of * 2 in S2 appears when

the pulse counter is 1, according to the algorithm

for N1 and N2, no matter when these messages ar-

rive, both N1 and N2 will first dequeue the mes-

sage containing the command + 2 and then * 2

into Last buffer, assuming initially there are two

do nothing commands already exist in the Last

Algorithm 2 For Other Nodes

Require: Messages arrive in order and delivered ex-

actly once.

for all n ∈ Node ∪ Sink do

In := {i | i→ n}
Lastn := ∅ //key: node

//value: pulse → update

Buffern := ∅ //key: node

//value: a queue of pulse → update

loop

(ri, re, rp) = receive() //ri: sender id

//re: update value, rp: pulse value

enqueue(Buffern[ri], rp → re)

while for all i ∈ In,Buffern[i] is not empty do

pulsemin := +∞
for all i ∈ In do

p += key(peek(Buffern[i]))

if p < pulsemin then

pulsemin ← p

end if

end for

for all i ∈ In do

if key(peek(Buffern[i])) = pulsemin then

Lastn += {i→ dequeue(Buffern[i])}
end if

end for

if |Lastn| = |In| then
e := compute(Lastn)

send(n, e, pulsemin)

end if

end while

end loop

end for

buffer, the result will be computed first with + 2

and then * 2, thus both N1 and N2 generate new

updates first 2 and then 4.

The pulse nodes essentially act as a global clock.

For a single-source glitch, the ”clock” information

is similar to the version in Distributed XFRP; For

a concurrent glitch, every node can coordinate mes-

sages consistently.

PSNK doesn’t have the same single point of fail-

ure problem as in source unification, because it al-

lows to use more than one pulse node, and even

if some of the pulse nodes crash, the only effect is

that each source node receives fewer pulses, but the

received amount of pulses are still the same.

The limitation of PSNK is when the average fre-

quency of pulse nodes is lower than source nodes,

some updates from source nodes may be dropped

because the algorithm in source nodes only sends

the first update for each pulse.

Fig. 6 DREAM

4 Other Algorithms

We introduce two existing algorithms called

DREAM [6] and QPROP [7] briefly before the ex-

periments in Section 5 which compare PSNK with

them, both of them provide the property of single-

source and complete glitch freedom, but each has

its drawbacks.

Because both DREAM and QPROP use a simi-

lar technique to solve single-source glitches, we only

discuss concurrent glitches here.

4. 1 DREAM

As shown in Fig. 6, DREAM introduces a coor-

dinator node (lock manager) to manage the lock,

every time a source wants to send an update, it

needs to acquire a lock from the lock manager, if

there is no lock, the update will be sent immedi-

ately, otherwise, it needs to wait until the release

of all locks.

Every pair of sources in DREAM has a conflict

set, which includes all the conflicting nodes (nodes

that are susceptible to concurrent glitches) if they

send messages concurrently. Every time a source

acquired a lock, all the nodes in the conflict set will

be locked until each of them received an update

from this source, then the lock will be released, and

another source can send its update now.

Even although DREAM only locks the smallest

set of nodes, the lock still blocks many concurrent

updates and harms the overall performance.

4. 2 QPROP

Every node in QPROP needs to do a check when-

ever it receives a new message to avoid glitches. As

shown in Fig. 7, assume there is a node N3 that

connect to both N1 and N2. UN1(valS1, valS2) de-

Fig. 7 QPROP

notes the updating of N1 using a value valS1 prop-

agated by S1 and a value valS2 propagated by S2,

TimeS1(v) denotes the S1’s clock time (similar to

version in Distributed XFRP) tagged to value v.

The updating rule is described as below:
UN3(valN1, valN2) ⇐⇒

TimeS1(valN1) == TimeS1(valN2)

∧TimeS2(valN1) == TimeS2(valN2)
Only if this constraint is satisfied, the update

UN3(valN1, valN2) can be computed and sent.

QPROP doesn’t use any lock, the sources can

update concurrently, but due to the latency of net-

work connections, a live lock can occur [7], which

means almost all of the messages are dropped be-

cause they don’t satisfy the constraint.

5 Experiments

To evaluate the performance of our proposed al-

gorithm, we did several experiments by simulation.

In all simulations, if not specified, the default num-

ber of pulses is 2, the default number of sources

is 4, the default number of nodes is 100, the de-

fault depth of the dependency graph is 10, and

each source generates one update every 4 millisec-

onds and send 50 messages in each simulation, each

pulse send one pulse message every 2 milliseconds,

and the default network latency is randomly chosen

from a Gaussian distribution whose mean is 30 mil-

liseconds and deviation is 10 milliseconds for each

connection. The computation in each node takes

zero time.

5. 1 Valid Update from Sources

The first experiment is only for our algorithm

PSNK, because it is possible to drop updates from

sources, we need to measure the percentage of the

sent updates.

There are 2 lines in Fig. 8, the green line means

Fig. 8 The Percentage of Valid Update from

Sources

Fig. 9 The Percentage of Valid Update

Received in Sink Nodes

there is only one pulse node, and the red line rep-

resents there are 2 pulse nodes. When the number

of pulse nodes are the same, source sent/updated

increases along with the f(pulse)/f(source) (f(x)

means the frequency of x). It means when the fre-

quency of pulses gets higher, fewer messages get

dropped. And when f(pulse) equals to f(source),

most of messages (over 90 percent) was successfully

sent.

The red line climbs faster than the green line,

which means with 2 pulse nodes, compared to only

one pulse node with the same pulse frequency, fewer

updates were dropped.

5. 2 Valid Update Received in Sink Nodes

This experiment evaluates the percentage of re-

ceived messages in relation to the sent updates

from sources in sink nodes(sink nodes are the nodes

Fig. 10 Average Message Latency Affected by

Depth

without outgoing connections). We only evaluate

QPROP and PSNK, because only they have the

chance to drop messages. Message dropping in

QPROP is possible to happen in every node, while

in PSNK it is only possible in source nodes, and

compared to QPROP, PSNK can increase the mes-

sage frequency of pulse nodes to reduce the message

dropping. Since we’ve already evaluated the valid

update from sources for PSNK in the previous sec-

tion, we use a high enough pulse frequency here to

make sure almost no update is dropped in PSNK.

The x-axis in Fig. 9 means the depth of the de-

pendency graph, we can see the percentage of valid

updates in nodes of QPROP is around 2%, while

that of PSNK is almost 100%,

5. 3 Average Message Latency Affected

by Depth

From here we start to evaluate all three algo-

rithms. Average message latency means the aver-

age latency of every message sent by sources until

they arrive sinks in milliseconds. And the depth

means the depth of the dependency graph.

From Fig. 10, the latency of DREAM is much

higher than both PSNK and QPROP, while PSNK

and QPROP are close to each other.

5. 4 Average Message Latency Affected

by Period of Sources

In this experiment, we evaluated the average la-

tency affected by the period of sources. In Fig. 11,

the period of sources ranges from 10 to 310 millisec-

onds. As we can see, the result is similar, DREAM

Fig. 11 Average Message Latency affected by

Period of Sources

is worse than QPROP and PSNK, while PSNK and

QPROP are close to each other.

6 Discussion

From the experiments, we can see that DREAM

performs worse than QPROP and PSNK, this is

reasonable, because it uses a central lock manager,

and concurrent updates will be blocked if there is

a conflicting source sending its update, which de-

creases the performance of DREAM.

For QPROP and PSNK, the average message la-

tency is similar to each other, however, compared to

PSNK with a high enough pulse frequency, QPROP

has a much higher possibility to drop messages.

The obvious limitation of our proposed algorithm

is that when the frequency of pulse nodes is lower

than that of source nodes, updates from sources

may be dropped, and actually no matter how high

the frequency of pulse nodes is, the possibility of

dropping messages always exists. As a result, the

current implementation of PSNK is not suitable

for distributed systems where every update from

sources is crucial.

Furthermore, every pulse node needs to be con-

nected to every source node, the number of con-

nections will grow rapidly when there are more and

more pulse and source nodes.

7 Related Work

There are many algorithms, libraries, and lan-

guages proposed for reactive programming, either

distributed or not. We summarize some of them in

this section.

Elm [2] is an FRP language for client-side pro-

gramming in browsers. It is not designed for dis-

tributed systems, but its propagation algorithm can

be extended to distributed settings. The extended

version ELMs [3] triggers no change messages in all

sources whenever one source sends an update, the

number of messages is much higher than in other

algorithms.

The SID-UP propagation algorithm in a reac-

tive language called Distributed REScala [3] is a dis-

tributed algorithm that prevents both single-source

and concurrent glitches, but its evaluation model is

iterative, which means no other sources can send

an update when there is an existing source that is

sending an update.

The source unification method from Distributed

XFRP [10] can ensure the property of concurrent

glitches, but it is hard to add multiple unification

nodes, which introduces the single point of failure

problem.

DREAM [6] use a lock manager to avoid concur-

rent glitch, compared with SID-UP, it only prevents

conflict sources rather than all sources from updat-

ing, thus having a better performance than SID-UP

[3], but the existence of a central lock still hurt the

performance.

QPROP [7] doesn’t have any lock, which allows

concurrent updates of all sources, however, the dif-

ficulty of satisfying the constraint prevents it from

producing more valid updates.

8 Conclusion and Future Direction

We proposed a new propagation algorithm called

PSNK that is meant to improve the Distributed

XFRP, by using pulse nodes, this algorithm guar-

antees the property of the single-source and com-

plete glitch freedom. We did some experiments to

evaluate its performance compared to other algo-

rithms, and conclude that PSNK produces more

valid updates and has a lower latency.

There is some work left to do in the future, no-

tably to find a way to prevent message dropping

and to reduce the connections from pulse nodes to

source nodes.

Acknowledgments This work is supported in

part by JSPS KAKENHI Grant Number 21K11822

and 22K11967.

References

[1] Bainomugisha, E., Carreton, A. L., Van Cutsem,

T., Mostinckx, S., and De Meuter, W.: A Survey on

Reactive Programming, ACM Computing Surveys,

Vol. 45, No. 4(2013), pp. 52:1–52:34.

[2] Czaplicki, E.: Elm: Concurrent FRP for Func-

tional GUI, Master’s thesis, School of Engineer-

ing and Applied Sciences, Harvard University, Mar.

2012.

[3] Drechsler, J., Salvaneschi, G., Mogk, R., and

Mezini, M.: Distributed REScala: An Update

Algorithm for Distributed Reactive Programming,

ACM International Conference on Object Oriented

Programming Systems Languages and Applications

(OOPSLA 2014), ACM, ACM, 2014, pp. 361–376.

[4] Elliott, C. and Hudak, P.: Functional Reac-

tive Animation, 2nd ACM SIGPLAN International

Conference on Functional Programming (ICFP

1997), ACM, 1997, pp. 263–273.

[5] Maier, I., Rompf, T., and Odersky, M.: Dep-

recating the Observer Pattern, Technical Report

EPFL-REPORT-148043, EPFL, 2010.

[6] Margara, A. and Salvaneschi, G.: On the Se-

mantics of Distributed Reactive Programming: The

Cost of Consistency, IEEE Transactions on Soft-

ware Engineering, Vol. 44, No. 7(2018), pp. 689–

711.

[7] Myter, F., Scholliers, C., and De Meuter, W.:

Distributed Reactive Programming for Reactive

Distributed Systems, The Art, Science, and En-

gineering of Programming, Vol. 3, No. 3(2019),

pp. 5:1–5:52.

[8] React: React: A JavaScript library for building

user interfaces, https://reactjs.org, Last accessed:

Aug. 2022.

[9] Sawada, K. and Watanabe, T.: Emfrp: A Func-

tional Reactive Programming Language for Small-

Scale Embedded Systems, MODULARITY Com-

panion 2016: Companion Proceedings of the 15th

International Conference on Modularity, ACM,

Mar. 2016, pp. 36–44.

[10] Shibanai, K. and Watanabe, T.: Distributed

Functional Reactive Programming on Actor-Based

Runtime, 8th ACM SIGPLAN International Work-

shop on Programming Based on Actors, Agents,

and Decentralized Control (AGERE 2018), ACM,

Nov 2018, pp. 13–22.

[11] Watanabe, T. and Sawada, K.: Towards an

Integration of the Actor Model in an FRP Lan-

guage for Small-Scale Embedded Systems, 6th

International Workshop on Programming based

on Actors, Agents, and Decentralized Control

(AGERE!@SPLASH 2016), Oct. 2016.

